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The formation of glasses on cooling is normal for substances of wide liquid range

(large Tb/Tg >2.0 for molecular liquids) and can be induced for most liquids if

cooling is fast enough. The former group of liquids exhibit glass transformations

(abrupt jumps of heat capacity as glass becomes supercooled liquid) during

reheating at normal scanning calorimetry rates (~1K/s), whereas the latter usually

pass directly to the crystalline state. Water (vitrified by hyperquenching or vapor

deposition) is an intermediate case and the possibility of observing a glass transition

before crystallisation has been debated vigorously but inconclusively over five

decades [1,2]. The consensus for the last two decades has been to accept a glass

transition at 136K [3,2], but this transition has perplexing qualities [4]. Recently it

has been suggested, using enthalpy relaxation arguments [2,5], that this assignment

must be wrong. The re-assignment of Tg to temperatures above the crystallisation

temperature has been vigorously contested [6]. Here we use detailed anneal-and-

scan studies of a hyperquenched inorganic glass, which does not crystallize on

heating, to interpret the perplexing aspects of the 136K phenomenon in water. We
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show that it is indeed linked to a glass transition, though only via a cross-over

phenomenon. The thermal history that gives the same behaviour ("shadow" glass

transition) in the inorganic glass is linked by crossover to a "normal" glass

transition 23% higher in temperature. While this confirms that a normal glass

transition is indeed unobservable for water, the vitreous nature of hyperquenched

glassy water is strongly supported. The shadow glass transition is reproducible in

the inorganic glass as it is in H2O. The observed aging dynamics are very relevant to

current glass theories, in particular to the interpretation of dynamical heterogeneity

which is seen to have an energy manifestation. (270 words)

 The most abundant form of water in the universe is the glassy form, which exists in thin

condensed films on interstellar dust particles [7]. This glass is in a configurationally

excited, or high fictive temperature state, relative to glasses formed by normal cooling

processes, and this circumstance has lead to much confusion in the interpretation of its

nature. Studies of this highly unstable state are usually made by heating the glass in

controlled fashion, thereby allowing it to relax out of the high energy state, but invariably

leading it to crystallise in the range 150-160K. There is no question that the deposited or

hyperquenched material is able to relax. The source of dispute concerns the state to which

it is able to relax before the crystallisation occurs.

Until recently it was agreed that it reaches the internally equilibrated (or metastable

liquid) state. It was believed to reach this state via a broad glass transformation (between

136 and 150K when scanned at 10K/min), and to be able to exist in this "ultraviscous
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state"[8] for considerable intervals of time. Indeed, it seemed that by appropriate

application of pressure it could be cycled between this LDA (low density amorphous)

water form and a high density amorphous HDA form, repeatedly [9]. Such a view is

supported by the observation of various relaxation processes, not only between

polyamorphic states, but internally within one form according to a variety of

spectroscopic features [10] and also according to "blunt-probe" penetrometry [11].

What has changed this perception is the realization that hyperquenched glassy states of

systems that are not abruptly crystallising during reheating, exhibit features that are

inconsistent with the behaviour of water under the assumption that it has a glass transition

at 136K [5]. In the present work we take the opposite approach and reach the same

conclusion. We use a non-crystallising hyperquenched glass, that is readily available, to

make detailed time-temperature studies of the annealing and recovery processes that

occur when the hyperquenched glass is given the chance to relax. We then identify

protocols that reproduce phenomena that share all the perplexing features of the 136K

vitreous water phenomenon. However because the system under study is a good

glassformer  (doesn't crystallise) it offers the possibility of observing how the perplexing

phenomena relate to the "normal" glass transition of this system. We have carried out this

study on an inorganic glass because of its availability and simplicity in handling (the

material is non-hygroscopic and woolly in texture [12]). However, these studies could

equally well be performed on a molecular "good" glassformer vitrified by

hyperquenching or vapour deposition. The surprise is only that it has not been performed

long before. Results like the present ones have in fact very recently been obtained on
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electrospray-quenched dibutylphthalate glass (L.-M. Wang and C. A. Angell, to be

published).

An advantage of the present study is that it not only assists us in understanding vitreous

water to an unprecedented level, but it also provides valuable insights into the out-of-

equilibrium glassy dynamics that is currently under intense study by theoretical physicists

using model liquids studied by molecular dynamics [13]. In particular it emphasises the

importance of the non-exponentiality and non-linearity of relaxation processes in glasses

that is manifested in these studies in a particularly striking way.

Fig. 1 shows the relation between the enthalpy and the cooling rate according to a

standard textbook figure (the right panel), and connects this diagram to the energy at

which the glass is trapped for different severities of quenching. A trap is otherwise

referred to as a "basin of attraction" on the multidimensional energy hypersurface [14]

which is currently much used in discussion of the energetics and kinetics of glassformers

[15,16]. Data to be shown below show how the common idea that a complex system can

be described as a point moving on such a surface is in need of refinement.

To examine the manner in which a system, that has been trapped at abnormally high

levels of such a landscape by fast quenching, recovers the state of a normal glass, we first

define a "standard" glass. A standard glass is one that has been cooled into the glassy

state at a rate Q = -0.33K/s (20K/min), as represented by the lower curve of Fig 1.

0.33K/s is chosen because the "onset-heating glass temperature", Tg,onset, defined as in
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Fig.2 inset, and ref.2, from a differential scanning calorimetry (DSC) "standard scan", is

then the temperature at which the structural relaxation time is ~100s [17]. The standard

scan is a DSC upscan conducted at the same rate, Q = +0.33K/s. Then we compare, with

this standard glass upscan, the 0.33K/s DSC upscan of a hyperquenched glass, which is a

glass formed by cooling into the glassy state along a curve like curve 3 of Fig.1, Q = 106

K/s.

For this study we chose a naturally occurring silicate glassformer (see Methods section)

that has been transformed into a 2-7µm fiber wool by a centrifugal melt spinning process

[12]. Carried out at a temperature of ~1800K, this provides a quenching rate estimated

at106 K/s [12], comparable to that used in the vitrification of water [3,18]. The solid curve

in Fig.1 inset is the initial scan of this material and the dashed curve is the rescan of the

same sample after cooling back into the glassy state at a "standard rate" of 0.33K/s

(20K/min). A continuation of either scan to higher temperatures results in a

crystallization at 1156K.

The state of the hyperquenched glass can then be described by its excess enthalpy, which

is given by the area between hyperquenched and standard scans, or by its "fictive "

temperature. The fictive temperature is indicated in Fig. 1 by the breakaway point from

the equilibrium liquid enthalpy, and it of course depends on the quenching rate. The

manner in which the fictive temperature  (1155 K in the present case) is determined from

data in Fig. 2 inset, has been described in detail elsewhere [5,12]
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In order to understand why water was incorrectly assigned a Tg of 136K on the basis of

DSC studies of hyperquenched water, we must understand how the annealing process

used by Johari et al [6] to  reveal a glass-transition-like thermal event, affects the

subsequent upscans of a non-crystallising hyperquenched glass. To overturn the earlier

conclusions [19,20] that no Tg can be measured for vitreous water Johari et al first

annealed the hyperquenched samples for 90 min at 130K, and then rescanned them from

low temperatures. Correct annealing can enhance the visibility of a glass transition, at the

expense of increasing the Tg by a few %. In Fig 3 we show a series of such anneal-and-

scans for the present glass samples in which the annealing temperature has been varied

from 0.5 to 0.9 Tg,onset. We deliberately stop short of the annealing range in which the

overshoot characteristic of the glass transition is enhanced.

The significance of this series of scans to current debate in glass physics will be outlined

below, after emphasising the resolution of the water Tg conundrum that they permit.  To

explain this resolution we could select either of scans g or h of Fig. 3 for closer

examination. However we can introduce extra information by choosing an equivalent

scan obtained by annealing a sample longer at a lower temperature before scanning. Thus

in Fig. 4 we compare a scan obtained by annealing one day at 773K (instead of 90 min at

823K) with the scans that have provided the basis for the 136K assignment of Tg for

water. The lower panel of Fig. 4 shows results for both hyperquenched (HQG) and vapor-

deposited (ASW)[21]. Both materials crystallize at ~150K, and this is the source of the

confusion, as we now see.
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The temperature scales in Fig. 4 are chosen so that O K is at a common point (offscale).

With this choice, features of the two parts of figure 4 may be compared on a common

basis, notwithstanding their very different temperature ranges. It is immediately clear

from this comparison that the feature assigned to the "Tg of water" in ref. 3 and other

papers [4,22] is, instead, a very interesting feature of the annealing kinetics of

hyperquenched glasses.  We will call this feature a 'shadow' glass transition because it is

indeed an image of the "real" or standard onset Tg . The real Tg however, occurs at a

temperature some 20-25% higher in absolute temperature, according to Figs. 3 and 4. We

note that Velikov et al [5] were incorrect in assigning the 136 K endotherm to a special

phenomenon (Bjerrum defect relaxation) peculiar to water. The same effect will be seen

in any glassformer, though the details may vary according to the distribution of relaxation

times (non-exponentiality, and non-linearity of relaxation, characteristic of the

glassformer. The important conclusion is that the endotherm previously attributed to the

glass transition of water is an annealing pre-peak, not a normal glass transition. The latter

remains unobservable, hidden by crystallisation as argued in refs. 5 and 20. The

quenched-in enthalpy that is unrelaxed at the temperature of crystallisation of HQG,

(which prompted the analysis of Velikov et al [5]), corresponds to the area lying under

the standard scan in Fig. 4, and above the crossover temperature in the case of the non-

crystallising glass.

The "annealing prepeak" at 710- 850K in the inorganic glass can be reproduced any

number of times by repeating the annealing process at the same temperature, provided

that the crossover temperature is not exceeded on heating [23]. Reproducibility of the
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endothermic effect was one of the supporting arguments that has previously lead to

general acceptance of 136K as the Tg appropriate to water. Of course avoiding the

crossover was mandated by the need to avoid crystallization.

Before considering the significance, to current issues in glass physics, of this striking

behaviour of the present system, let us quickly point out the explanation of the other

puzzles that the present scenario permits.

The first puzzle is the very small heat capacity jump ∆Cp at Tg according to Fig. 4, lower

panel, acknowledged in ref. 21. It is tenfold smaller than that predicted by extrapolations

of aqueous solution data [20,23], (which was taken as evidence for a "transition" in ref.

4). It is now explained by the comparison of ∆Cp values for "shadow" and "real" glass

transitions of the present glass, as exhibited in Fig. 4. Secondly, the reason for the sudden

jump (~25K) in Tg of hyperquenched propylene glycol +water solutions, which occurs at

the composition where the solutions become glassforming on normal cooling [22],

becomes obvious. Thirdly, the reason that water appears to be such a strong liquid

according to analysis of its transition width [2] is that the shadow transition is

intrinsically broader than the real transition (by a factor of 2, in Fig.4). Since we now

cannot measure water liquid state properties below 235K, except on nanosecond time

scales during hyperquenching, the matter of its fragility near its Tg becomes moot, unless

Maxwell demons are introduced, or nanoscopic samples invoked, to eliminate

crystallisation.. For a "Maxwell demon-protected" form of  non-crystallising water,

scaling by the ratio of shadow Tg to standard Tg of the non-crystallising glass suggests a
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"hidden Tg" for water of 160--180K, depending on how the effect of increasing network

character near pure water is assessed.

What does it mean that the crystallisation of ice Ic is so slow to occur, when the glass can

relax and even flow [11] so far below the "real" glass temperature? The fact that this

relaxation and even viscous flow can occur while parts of the structure carrying

considerable stored energy are still quite unrelaxed (curve h other sources e.g. Fig 9 of

ref. 24]), implies a very heterogeneous dynamics for the glass.  The failure to nucleate,

under unstable conditions (only diffusion is required) then suggests that the elements of

the structure that are relaxing below the temperature Tc in Fig. 4  (lower panel), are too

small in length scale to support a critical nucleus.

This evidence for heterogeneity brings us to consider the broader implications of Figs. 3

and 4. We find the crossover from endothermic to exothermic behaviour (relative to that

of the standard-glass-standard-scan) by the annealed hyperquenched "good" glassformer

to be very significant. It may be interpreted as a strong indication that the source of the

dynamic heterogeneity currently being found in so many glassformers [25-32] has a

counterpart in the potential energy, hence in the structure. Heretofore it has been widely

held that it is a purely dynamical effect, mainly because there was no evidence to the

contrary. But it is much easier to detect energy changes than structural changes. Changes

in potential energy can only come from changes in vibration averaged structure.
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The striking aspect of curves f, g and h of Fig. 3 and the scan in Fig. 4, is that the slowly

relaxing elements of the structure are of high energy, relative to the standard glass. They

remember their quenched-in states longer than those elements which can relax reversibly

at low temperatures. This low temperature relaxation can be repeated over and over while

the high energy structure responsible for the exotherm at 900-950 K remains locked in

place. The system can even undergo the macroscopic deformation necessary to define a

steady state viscosity while this structure remains locked in [25]. Since this is the

opposite of what is implied by such ensemble average concepts as are embodied in the

Adam-Gibbs entropy theory [29], and in the Cohen and Turnbull free volume model [30],

a regio-specific interpretation must be sought. One that presents itself naturally is that

these high energy elements are slowly relaxing because they are characterised by large

length scales that were frozen-in during the hyperquench. It is the length scale, not the

energy, that is important to the relaxation, this suggests. Another view is that, in the high

energy state frozen in by the hyperquench, a distribution of loose and tighter packings

exists which is uniformly higher in energy than the corresponding distribution at lower

fictive temperatures. Then the fast relaxing elements are indeed the higher energy

elements and the slower components are only high in energy relative to the fast elements

in the standard glass. Needed to choose between the two are comparative measurements

of relaxation rates in the standard glass and the hyperquenched, and incompletely relaxed

glass, at the same sub-Tg temperature. Whether or not the hyperquenched glass structure

can provide a matrix within which a permanent high mobility of a fraction of the

molecules can exist, is the question of interest. This is the "vault effect" discussed by

Donth [34], and the evidence from conductivity studies in ionic glasses is that it is real.
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Where does this leave the energy landscape concept that has been receiving so much

attention in recent work? In the landscape paradigm [31,14-16] the system is represented

by a single point moving on the multidimensional potential energy "hypersurface" (i.e.,

landscape), in effect "hopping" from one minimum to another. A single point cannot

easily be seen as simultaneously moving both towards and away from the "normal"

energy for the glass (i.e. that cooled according to the lower curve in Fig.1) as our present

system appears to be capable of doing. This suggests the need for some modification,

(and complication), of the landscape concept to permit the total system to be replaced by

an ensemble of dynamically independent systems of different sizes and associated

relaxation times. But then much of the simplicity, hence appeal, of the landscape concept

is lost. The reconciliation must lie, presumably, in the understanding of dynamics in

higher dimensional spaces. The present observations may then be seen as offering some

guidelines in the development of such dynamics.

In summary, we have identified the true origin of the endothermic effect observed at 136

K during DSC scanning of annealed amorphous water and previously attributed to its

glass transition.  It is an annealing prepeak of a form which, in hyperquenched glasses,

occurs some 20% lower in temperature than the standard glass transition to which it is

related.  This confirms that glassy water remains glassy until it crystallizes but supports

the notion that glass transition-like effects observed at ~160 � 180 K in hydrated proteins

and hydrogels are due to water structure unfreezing.
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Methods section.

The fibre samples were spun from a basalt-like glass melt with the composition: 49.3

SiO2, 15.6 Al2O3, 1.8 TiO2, 11.7 FeO, 10.4 CaO, 6.6 MgO, 3.9 Na2O, and 0.7 K2O (wt%)

in the temperature range between 1473 to 1573 K.  Before the spinning, the glass melt

was homogenised at temperatures of about 1800 ~ 1850 K for five hours. The fibres were

spun using the wheel centrifuge process, which has also been called the cascade or

mechanical spinning process. The glass melt is conveyed down a trough and onto the

outside of the rim of a spreader wheel. While some material is spun off, most of the melt

is transferred to either one or two larger wheels, which are located close to the first

wheel, and which are spinning in the opposite direction. Most of the fibres produced in

this process are generated from these wheels. As droplets of the melt are thrown from the

wheels by centrifugal force, a fibre is generated between the droplet and its starting point

as they diverge from each other due to the swift rotation of the wheel. A portion of the

melt is fiberised on each wheel. The fibres were drawn with speeds of over 200 m/s, so

that the average diameter of the fibres could reach 3.5 µm and the average

hyperquenching rate could reach 4×106 K/s.

To get rid of the "pearls" from the fibres and ensure uniform fictive temperature and

properties, the fibres were sieved using a 65 �m sieve. The cooling rate of the fibres was

calculated from the relation between cooling rate (Q) and shear viscosity (�): log (1/qc) =

log � - 11.22, as described in Ref. [37]. Before the DSC measurements, ageing of the

fibres is performed in an annealing furnace at various temperatures for 90 minutes.
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The heat capacity of the fibres was measured by using a differential scanning calorimeter

(DSC) Netzsch STA 449C. The fibres were placed in a platinum crucible situated on a

sample holder of the DSC at room temperature. To obtain the data in Figs. 2-4 samples

were held 5 mins at an initial temperature of 333 K, and then heated at a "standard" rate

of 0.333 K/s to the temperature 1013 K, and then cooled back to 573K at a rate of 0.333

K/min to 573 K, forming the "standard" glass. After natural cooling to room temperature,

the second upscan was performed using the same procedure as for the first. To determine

the heat capacity (Cp) of the fibres, both the baseline (blank) and the reference sample

(Sapphire) were measured. In order to confirm reproducibility, the measurements for

some samples were repeated to check whether drift in the baseline occurred or not, which

affects the measurements. We have also measured samples of continuously drawn fibres,

which have unique diameters. The results show the same relaxation behaviour as that of

the fibre (wool) made by the cascade process, indicating that the narrow distribution of

diameters of the sample studied in this work has negligible influence on the fictive

temperatures and shapes of the Cp curves.
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FIGURES FOR Yue and Angell

Fig. 1. Depiction of the commonly supposed relation between rate of the quench and the energy of the
"landscape"  basin of attraction in which the system is trapped. We  show below how the depiction of the
system as a point moving on such a surface is inadequate for systems accessible to experiment
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Figure 2.  Complete DSC 20K/min upscan of melt-spun glass sample showing initial relaxation (weak on
this scale) followed by glass transition near 960K, crystallization at1156 K, and finally liquidus
temperature at 1484K.
Inset shows superposition of the glass transition region of main figure with the "standard scan" of the
sample after completion of an intial scan to 1030Kwhich relaxes the quenched-in enthalpy without
permitting any crystallization. The standard onset Tg for this glass is 944K [21] The areabetween the curves
is the energy difference between the hyperquenched and normal glass, as indicated by the vertical double
arrow on the left panel of Fig.1 and can be used to determine the fictive temperature of the hyperquenched
glass.
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Figure. 3. Comparison of the two scans of Fig. 2 inset (here marked "standard" and "a") with a series of
scans of aged samples. For each of these (b to h) a fresh sample of the hyperquenched glass was annealed
90 min. at one of the temperatures listed in the legend before lowering the temperature to 400K and
scanning up to1030K to observe the enthalpy relaxation of the remaining excess (frozen-in) enthalpy. Note,
in particular, the evidence that the samples aged at temperatures above ~723K reach lower enthalpies than
the standard glass for fast-relaxing components of the structure, while the slow-relaxing components of the
structure are still trapped in states of much higher enthalpy than that of the standard glass. This proves that,
if the non-exponential relaxation of viscous liquids is due to dynamical heterogeneity as is now suggested,
then the heterogeneity is not merely dynamic but has an energetic, hence structural, origin.
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Figure 4. Comparison of the thermogram of the hyperquenched mineral glass sample aged one day at 773K
before upscanning, (upper panel) with the upscans of hyperquenched water HQG and vapor deposited
ASW samples [21] that had been aged 90 mins at 130K before upscanning (lower panel). The temperature
scales are set so that each has OK at the same point offscale., These latter have been the basis for assigning
a Tg of 136K to water. The comparison shows that this endotherm can arise from an annealing effect that
we here call the "shadow glass transition" because it is indeed related to the glass transition. However, as is
obvious from the comparison with the non-crystallizing glass, the "real" glass transition in the case of water
has been eliminated from observation by crystallization. The hatched line in the upper part of the figure is
the part that we suggest has been cut out of the water sample scan by crystallization commencing at or
slightly above the temperature marked Tc. The ratio of the onset temperature of the shadow Tg to the
("standard onset") Tg of the mineral glass, is 0.80. Applying the same ratio to the "shadow Tg" of water we
obtain a "real but hidden" Tg of 169K. However, this ratio will depend on system fragility so the estimate
of the hidden Tg for water is uncertain.  (Data and Tg identification on HQG and ASW taken from Ref. 21.)


